Storage \mathcal{E} Indexing in Modern Databases

ECS 165A - Winter 2024

Mohammad Sadoghi
Exploratory Systems Lab
Department of Computer Science
UCDAVIS
UNIVERSITY OF CALIFORNIA

Apache
 ResilientDB
 Incubating

How to quickly search for the desired information?

Searching for 76

Searching for 76

Searching for 76

Searching for 44?
(what-if the value does not exist) (could we have an early termination?)

55

Could we impose an order to improve the search?

Searching for 76
$\begin{array}{llllllllllllllllllllll}12 & 13 & 21 & 22 & 33 & 34 & 43 & 55 & 56 & 61 & 66 & 71 & 74 & 76 & 81 & 84 & 91 & 99\end{array}$

Searching for 76
$\begin{array}{lllllllllllllllllllll}12 & 13 & 21 & 22 & 33 & 34 & 43 & 55 & 56 & 61 & 66 & 71 & 74 & 76 & 81 & 84 & 91 & 99\end{array}$

Could we impose a structure to further improve the search?

Could we spread the data cleverly to improve the search?

hashtable
Hashing $(\bigcirc)=$?
(returns a value
between 1 to n ,
where n is the
number of buckets)

Hashing $(81)=6$

81

Hashing (76) $=8$

collisions
(when multiple values hash to the same bucket)

Hashing (76) $=8$

56	12
99	
71	
33	6174
55	
81	
84	
76	
13	
43	91
34	

Searching for 76

56	12
99	
71	
33	6174
55	
81	
84	
76	
13	
43	91
34	

Searching for 76-91?
Could we instead search for 76, 77, 78, ..., 90, 91?

Hashing (76) $=8$	56	12	
Hashing (77) = 1	99		
Hashing (78) = 3	71		
I	33	6	74
	55		
Hashing (81) = 6	81		
I	84		
Hashing (84) = 7	76		
!	13		
Hashing (90) = 8	43	9	
Hashing (91) = $\mathbf{1 0}$	34		

Searching for 76-91 Could we instead search for $76,77,78, \ldots, 90,91 ?$

Hashing (76) = 8	56	12
Hashing (77) = 1	99	
Hashing (78) $=3$	71	
!	33	6174
'	55	
Hashing (81) = 6	81	
i	84	
Hashing (84) = 7	76	
!	13	
Hashing (90) = 8	43	91
Hashing (91) = 10	34	

Searching for 76-91 How about 76.01, 76.02, 76.03, ...? (simply not practical)

Could we imagine a new design to support searching for a range of values efficiently?

Let's promote a subset of values as seeds

sorted seeds
$34 \quad 71 \quad 91$

Searching for 76-91
sorted seeds

Find the largest seed smaller than 76:71

Inserting 79
sorted seeds

Find the largest seed smaller than 79:

Database Storage Layouts
 (how likely that we need an index for range queries?)

database pages
(containing a set of records)
[Name: Alice, Age:21, Major: CS]
a database record, e.g., [Name: Alice, Age:21, Major: CS]

Searching for all students between the age of 21 to 24 (may return many students)

Searching for all students between the age of 21 to 24 (may return many students)

Searching for all students between the age of 21 to 24 (may return many students)

Row-based Layout

Searching for all students between the age of 21 to 24 (may return many students)

Alternatively read only the Age column to find the relevant values

Column-based Layout

Searching for all students between the age of 21 to 24 (may return many students)

Searching for all students over the age of 24 (may return only a few students)

Searching for all students over the age of 24 (may return only a few students)

Thank You Questions?

